3.3.78 \(\int \frac {\sqrt {a+a \sec (c+d x)}}{\sqrt [3]{e \sec (c+d x)}} \, dx\) [278]

3.3.78.1 Optimal result
3.3.78.2 Mathematica [C] (verified)
3.3.78.3 Rubi [A] (warning: unable to verify)
3.3.78.4 Maple [F]
3.3.78.5 Fricas [F]
3.3.78.6 Sympy [F]
3.3.78.7 Maxima [F]
3.3.78.8 Giac [F]
3.3.78.9 Mupad [F(-1)]

3.3.78.1 Optimal result

Integrand size = 27, antiderivative size = 662 \[ \int \frac {\sqrt {a+a \sec (c+d x)}}{\sqrt [3]{e \sec (c+d x)}} \, dx=\frac {3 a \tan (c+d x)}{d \sqrt [3]{e \sec (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {3 a \tan (c+d x)}{d \sqrt {a+a \sec (c+d x)} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{e}-\sqrt [3]{e \sec (c+d x)}\right )}-\frac {3 \sqrt [4]{3} \sqrt {2-\sqrt {3}} a^2 E\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{e}-\sqrt [3]{e \sec (c+d x)}}{\left (1+\sqrt {3}\right ) \sqrt [3]{e}-\sqrt [3]{e \sec (c+d x)}}\right )|-7-4 \sqrt {3}\right ) \left (\sqrt [3]{e}-\sqrt [3]{e \sec (c+d x)}\right ) \sqrt {\frac {e^{2/3}+\sqrt [3]{e} \sqrt [3]{e \sec (c+d x)}+(e \sec (c+d x))^{2/3}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{e}-\sqrt [3]{e \sec (c+d x)}\right )^2}} \tan (c+d x)}{2 d e^{2/3} (a-a \sec (c+d x)) \sqrt {a+a \sec (c+d x)} \sqrt {\frac {\sqrt [3]{e} \left (\sqrt [3]{e}-\sqrt [3]{e \sec (c+d x)}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{e}-\sqrt [3]{e \sec (c+d x)}\right )^2}}}+\frac {\sqrt {2} 3^{3/4} a^2 \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{e}-\sqrt [3]{e \sec (c+d x)}}{\left (1+\sqrt {3}\right ) \sqrt [3]{e}-\sqrt [3]{e \sec (c+d x)}}\right ),-7-4 \sqrt {3}\right ) \left (\sqrt [3]{e}-\sqrt [3]{e \sec (c+d x)}\right ) \sqrt {\frac {e^{2/3}+\sqrt [3]{e} \sqrt [3]{e \sec (c+d x)}+(e \sec (c+d x))^{2/3}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{e}-\sqrt [3]{e \sec (c+d x)}\right )^2}} \tan (c+d x)}{d e^{2/3} (a-a \sec (c+d x)) \sqrt {a+a \sec (c+d x)} \sqrt {\frac {\sqrt [3]{e} \left (\sqrt [3]{e}-\sqrt [3]{e \sec (c+d x)}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{e}-\sqrt [3]{e \sec (c+d x)}\right )^2}}} \]

output
3*a*tan(d*x+c)/d/(e*sec(d*x+c))^(1/3)/(a+a*sec(d*x+c))^(1/2)+3*a*tan(d*x+c 
)/d/(-(e*sec(d*x+c))^(1/3)+e^(1/3)*(1+3^(1/2)))/(a+a*sec(d*x+c))^(1/2)+3^( 
3/4)*a^2*EllipticF((-(e*sec(d*x+c))^(1/3)+e^(1/3)*(1-3^(1/2)))/(-(e*sec(d* 
x+c))^(1/3)+e^(1/3)*(1+3^(1/2))),I*3^(1/2)+2*I)*(e^(1/3)-(e*sec(d*x+c))^(1 
/3))*2^(1/2)*((e^(2/3)+e^(1/3)*(e*sec(d*x+c))^(1/3)+(e*sec(d*x+c))^(2/3))/ 
(-(e*sec(d*x+c))^(1/3)+e^(1/3)*(1+3^(1/2)))^2)^(1/2)*tan(d*x+c)/d/e^(2/3)/ 
(a-a*sec(d*x+c))/(a+a*sec(d*x+c))^(1/2)/(e^(1/3)*(e^(1/3)-(e*sec(d*x+c))^( 
1/3))/(-(e*sec(d*x+c))^(1/3)+e^(1/3)*(1+3^(1/2)))^2)^(1/2)-3/2*3^(1/4)*a^2 
*EllipticE((-(e*sec(d*x+c))^(1/3)+e^(1/3)*(1-3^(1/2)))/(-(e*sec(d*x+c))^(1 
/3)+e^(1/3)*(1+3^(1/2))),I*3^(1/2)+2*I)*(e^(1/3)-(e*sec(d*x+c))^(1/3))*(1/ 
2*6^(1/2)-1/2*2^(1/2))*((e^(2/3)+e^(1/3)*(e*sec(d*x+c))^(1/3)+(e*sec(d*x+c 
))^(2/3))/(-(e*sec(d*x+c))^(1/3)+e^(1/3)*(1+3^(1/2)))^2)^(1/2)*tan(d*x+c)/ 
d/e^(2/3)/(a-a*sec(d*x+c))/(a+a*sec(d*x+c))^(1/2)/(e^(1/3)*(e^(1/3)-(e*sec 
(d*x+c))^(1/3))/(-(e*sec(d*x+c))^(1/3)+e^(1/3)*(1+3^(1/2)))^2)^(1/2)
 
3.3.78.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.16 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.11 \[ \int \frac {\sqrt {a+a \sec (c+d x)}}{\sqrt [3]{e \sec (c+d x)}} \, dx=\frac {2 \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {4}{3},\frac {3}{2},1-\sec (c+d x)\right ) \sqrt [3]{\sec (c+d x)} \sqrt {a (1+\sec (c+d x))} \tan \left (\frac {1}{2} (c+d x)\right )}{d \sqrt [3]{e \sec (c+d x)}} \]

input
Integrate[Sqrt[a + a*Sec[c + d*x]]/(e*Sec[c + d*x])^(1/3),x]
 
output
(2*Hypergeometric2F1[1/2, 4/3, 3/2, 1 - Sec[c + d*x]]*Sec[c + d*x]^(1/3)*S 
qrt[a*(1 + Sec[c + d*x])]*Tan[(c + d*x)/2])/(d*(e*Sec[c + d*x])^(1/3))
 
3.3.78.3 Rubi [A] (warning: unable to verify)

Time = 0.63 (sec) , antiderivative size = 672, normalized size of antiderivative = 1.02, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.259, Rules used = {3042, 4293, 61, 73, 832, 759, 2416}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a \sec (c+d x)+a}}{\sqrt [3]{e \sec (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a}}{\sqrt [3]{e \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4293

\(\displaystyle -\frac {a^2 e \tan (c+d x) \int \frac {1}{(e \sec (c+d x))^{4/3} \sqrt {a-a \sec (c+d x)}}d\sec (c+d x)}{d \sqrt {a-a \sec (c+d x)} \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 61

\(\displaystyle -\frac {a^2 e \tan (c+d x) \left (-\frac {\int \frac {1}{\sqrt [3]{e \sec (c+d x)} \sqrt {a-a \sec (c+d x)}}d\sec (c+d x)}{2 e}-\frac {3 \sqrt {a-a \sec (c+d x)}}{a e \sqrt [3]{e \sec (c+d x)}}\right )}{d \sqrt {a-a \sec (c+d x)} \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {a^2 e \tan (c+d x) \left (-\frac {3 \int \frac {\sqrt [3]{e \sec (c+d x)}}{\sqrt {a-a \sec (c+d x)}}d\sqrt [3]{e \sec (c+d x)}}{2 e^2}-\frac {3 \sqrt {a-a \sec (c+d x)}}{a e \sqrt [3]{e \sec (c+d x)}}\right )}{d \sqrt {a-a \sec (c+d x)} \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 832

\(\displaystyle -\frac {a^2 e \tan (c+d x) \left (-\frac {3 \left (\left (1-\sqrt {3}\right ) \sqrt [3]{e} \int \frac {1}{\sqrt {a-a \sec (c+d x)}}d\sqrt [3]{e \sec (c+d x)}-\int \frac {\left (1-\sqrt {3}\right ) \sqrt [3]{e}-\sqrt [3]{e \sec (c+d x)}}{\sqrt {a-a \sec (c+d x)}}d\sqrt [3]{e \sec (c+d x)}\right )}{2 e^2}-\frac {3 \sqrt {a-a \sec (c+d x)}}{a e \sqrt [3]{e \sec (c+d x)}}\right )}{d \sqrt {a-a \sec (c+d x)} \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 759

\(\displaystyle -\frac {a^2 e \tan (c+d x) \left (-\frac {3 \left (-\int \frac {\left (1-\sqrt {3}\right ) \sqrt [3]{e}-\sqrt [3]{e \sec (c+d x)}}{\sqrt {a-a \sec (c+d x)}}d\sqrt [3]{e \sec (c+d x)}-\frac {2 \left (1-\sqrt {3}\right ) \sqrt {2+\sqrt {3}} \sqrt [3]{e} \sqrt {\frac {\sqrt [3]{e} \sqrt [3]{e \sec (c+d x)}+(e \sec (c+d x))^{2/3}+e^{2/3}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{e}-\sqrt [3]{e \sec (c+d x)}\right )^2}} \left (\sqrt [3]{e}-\sqrt [3]{e \sec (c+d x)}\right ) \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{e}-\sqrt [3]{e \sec (c+d x)}}{\left (1+\sqrt {3}\right ) \sqrt [3]{e}-\sqrt [3]{e \sec (c+d x)}}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {a-a \sec (c+d x)} \sqrt {\frac {\sqrt [3]{e} \left (\sqrt [3]{e}-\sqrt [3]{e \sec (c+d x)}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{e}-\sqrt [3]{e \sec (c+d x)}\right )^2}}}\right )}{2 e^2}-\frac {3 \sqrt {a-a \sec (c+d x)}}{a e \sqrt [3]{e \sec (c+d x)}}\right )}{d \sqrt {a-a \sec (c+d x)} \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 2416

\(\displaystyle -\frac {a^2 e \tan (c+d x) \left (-\frac {3 \left (-\frac {2 \left (1-\sqrt {3}\right ) \sqrt {2+\sqrt {3}} \sqrt [3]{e} \left (\sqrt [3]{e}-\sqrt [3]{e \sec (c+d x)}\right ) \sqrt {\frac {\sqrt [3]{e} \sqrt [3]{e \sec (c+d x)}+(e \sec (c+d x))^{2/3}+e^{2/3}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{e}-\sqrt [3]{e \sec (c+d x)}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{e}-\sqrt [3]{e \sec (c+d x)}}{\left (1+\sqrt {3}\right ) \sqrt [3]{e}-\sqrt [3]{e \sec (c+d x)}}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {a-a \sec (c+d x)} \sqrt {\frac {\sqrt [3]{e} \left (\sqrt [3]{e}-\sqrt [3]{e \sec (c+d x)}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{e}-\sqrt [3]{e \sec (c+d x)}\right )^2}}}-\frac {\sqrt [4]{3} \sqrt {2-\sqrt {3}} \sqrt [3]{e} \left (\sqrt [3]{e}-\sqrt [3]{e \sec (c+d x)}\right ) \sqrt {\frac {\sqrt [3]{e} \sqrt [3]{e \sec (c+d x)}+(e \sec (c+d x))^{2/3}+e^{2/3}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{e}-\sqrt [3]{e \sec (c+d x)}\right )^2}} E\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{e}-\sqrt [3]{e \sec (c+d x)}}{\left (1+\sqrt {3}\right ) \sqrt [3]{e}-\sqrt [3]{e \sec (c+d x)}}\right )|-7-4 \sqrt {3}\right )}{\sqrt {a-a \sec (c+d x)} \sqrt {\frac {\sqrt [3]{e} \left (\sqrt [3]{e}-\sqrt [3]{e \sec (c+d x)}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{e}-\sqrt [3]{e \sec (c+d x)}\right )^2}}}+\frac {2 e \sqrt {a-a \sec (c+d x)}}{a \left (\left (1+\sqrt {3}\right ) \sqrt [3]{e}-\sqrt [3]{e \sec (c+d x)}\right )}\right )}{2 e^2}-\frac {3 \sqrt {a-a \sec (c+d x)}}{a e \sqrt [3]{e \sec (c+d x)}}\right )}{d \sqrt {a-a \sec (c+d x)} \sqrt {a \sec (c+d x)+a}}\)

input
Int[Sqrt[a + a*Sec[c + d*x]]/(e*Sec[c + d*x])^(1/3),x]
 
output
-((a^2*e*((-3*Sqrt[a - a*Sec[c + d*x]])/(a*e*(e*Sec[c + d*x])^(1/3)) - (3* 
((2*e*Sqrt[a - a*Sec[c + d*x]])/(a*((1 + Sqrt[3])*e^(1/3) - (e*Sec[c + d*x 
])^(1/3))) - (3^(1/4)*Sqrt[2 - Sqrt[3]]*e^(1/3)*EllipticE[ArcSin[((1 - Sqr 
t[3])*e^(1/3) - (e*Sec[c + d*x])^(1/3))/((1 + Sqrt[3])*e^(1/3) - (e*Sec[c 
+ d*x])^(1/3))], -7 - 4*Sqrt[3]]*(e^(1/3) - (e*Sec[c + d*x])^(1/3))*Sqrt[( 
e^(2/3) + e^(1/3)*(e*Sec[c + d*x])^(1/3) + (e*Sec[c + d*x])^(2/3))/((1 + S 
qrt[3])*e^(1/3) - (e*Sec[c + d*x])^(1/3))^2])/(Sqrt[a - a*Sec[c + d*x]]*Sq 
rt[(e^(1/3)*(e^(1/3) - (e*Sec[c + d*x])^(1/3)))/((1 + Sqrt[3])*e^(1/3) - ( 
e*Sec[c + d*x])^(1/3))^2]) - (2*(1 - Sqrt[3])*Sqrt[2 + Sqrt[3]]*e^(1/3)*El 
lipticF[ArcSin[((1 - Sqrt[3])*e^(1/3) - (e*Sec[c + d*x])^(1/3))/((1 + Sqrt 
[3])*e^(1/3) - (e*Sec[c + d*x])^(1/3))], -7 - 4*Sqrt[3]]*(e^(1/3) - (e*Sec 
[c + d*x])^(1/3))*Sqrt[(e^(2/3) + e^(1/3)*(e*Sec[c + d*x])^(1/3) + (e*Sec[ 
c + d*x])^(2/3))/((1 + Sqrt[3])*e^(1/3) - (e*Sec[c + d*x])^(1/3))^2])/(3^( 
1/4)*Sqrt[a - a*Sec[c + d*x]]*Sqrt[(e^(1/3)*(e^(1/3) - (e*Sec[c + d*x])^(1 
/3)))/((1 + Sqrt[3])*e^(1/3) - (e*Sec[c + d*x])^(1/3))^2])))/(2*e^2))*Tan[ 
c + d*x])/(d*Sqrt[a - a*Sec[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]))
 

3.3.78.3.1 Defintions of rubi rules used

rule 61
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] - Simp[d*(( 
m + n + 2)/((b*c - a*d)*(m + 1)))   Int[(a + b*x)^(m + 1)*(c + d*x)^n, x], 
x] /; FreeQ[{a, b, c, d, n}, x] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0 
] || (NeQ[c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d 
, m, n, x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 

rule 832
Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3] 
], s = Denom[Rt[b/a, 3]]}, Simp[(-(1 - Sqrt[3]))*(s/r)   Int[1/Sqrt[a + b*x 
^3], x], x] + Simp[1/r   Int[((1 - Sqrt[3])*s + r*x)/Sqrt[a + b*x^3], x], x 
]] /; FreeQ[{a, b}, x] && PosQ[a]
 

rule 2416
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Simplify[(1 - Sqrt[3])*(d/c)]], s = Denom[Simplify[(1 - Sqrt[3])*(d/c) 
]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 + Sqrt[3])*s + r*x))), x] - S 
imp[3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/( 
(1 + Sqrt[3])*s + r*x)^2]/(r^2*Sqrt[a + b*x^3]*Sqrt[s*((s + r*x)/((1 + Sqrt 
[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3]) 
*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && Eq 
Q[b*c^3 - 2*(5 - 3*Sqrt[3])*a*d^3, 0]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4293
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)], x_Symbol] :> Simp[a^2*d*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]] 
*Sqrt[a - b*Csc[e + f*x]]))   Subst[Int[(d*x)^(n - 1)/Sqrt[a - b*x], x], x, 
 Csc[e + f*x]], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0]
 
3.3.78.4 Maple [F]

\[\int \frac {\sqrt {a +a \sec \left (d x +c \right )}}{\left (e \sec \left (d x +c \right )\right )^{\frac {1}{3}}}d x\]

input
int((a+a*sec(d*x+c))^(1/2)/(e*sec(d*x+c))^(1/3),x)
 
output
int((a+a*sec(d*x+c))^(1/2)/(e*sec(d*x+c))^(1/3),x)
 
3.3.78.5 Fricas [F]

\[ \int \frac {\sqrt {a+a \sec (c+d x)}}{\sqrt [3]{e \sec (c+d x)}} \, dx=\int { \frac {\sqrt {a \sec \left (d x + c\right ) + a}}{\left (e \sec \left (d x + c\right )\right )^{\frac {1}{3}}} \,d x } \]

input
integrate((a+a*sec(d*x+c))^(1/2)/(e*sec(d*x+c))^(1/3),x, algorithm="fricas 
")
 
output
integral(sqrt(a*sec(d*x + c) + a)*(e*sec(d*x + c))^(2/3)/(e*sec(d*x + c)), 
 x)
 
3.3.78.6 Sympy [F]

\[ \int \frac {\sqrt {a+a \sec (c+d x)}}{\sqrt [3]{e \sec (c+d x)}} \, dx=\int \frac {\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )}}{\sqrt [3]{e \sec {\left (c + d x \right )}}}\, dx \]

input
integrate((a+a*sec(d*x+c))**(1/2)/(e*sec(d*x+c))**(1/3),x)
 
output
Integral(sqrt(a*(sec(c + d*x) + 1))/(e*sec(c + d*x))**(1/3), x)
 
3.3.78.7 Maxima [F]

\[ \int \frac {\sqrt {a+a \sec (c+d x)}}{\sqrt [3]{e \sec (c+d x)}} \, dx=\int { \frac {\sqrt {a \sec \left (d x + c\right ) + a}}{\left (e \sec \left (d x + c\right )\right )^{\frac {1}{3}}} \,d x } \]

input
integrate((a+a*sec(d*x+c))^(1/2)/(e*sec(d*x+c))^(1/3),x, algorithm="maxima 
")
 
output
integrate(sqrt(a*sec(d*x + c) + a)/(e*sec(d*x + c))^(1/3), x)
 
3.3.78.8 Giac [F]

\[ \int \frac {\sqrt {a+a \sec (c+d x)}}{\sqrt [3]{e \sec (c+d x)}} \, dx=\int { \frac {\sqrt {a \sec \left (d x + c\right ) + a}}{\left (e \sec \left (d x + c\right )\right )^{\frac {1}{3}}} \,d x } \]

input
integrate((a+a*sec(d*x+c))^(1/2)/(e*sec(d*x+c))^(1/3),x, algorithm="giac")
 
output
sage0*x
 
3.3.78.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+a \sec (c+d x)}}{\sqrt [3]{e \sec (c+d x)}} \, dx=\int \frac {\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}}{{\left (\frac {e}{\cos \left (c+d\,x\right )}\right )}^{1/3}} \,d x \]

input
int((a + a/cos(c + d*x))^(1/2)/(e/cos(c + d*x))^(1/3),x)
 
output
int((a + a/cos(c + d*x))^(1/2)/(e/cos(c + d*x))^(1/3), x)